The Biological Actions of 11,12-Epoxyeicosatrienoic Acid in Endothelial Cells Are Specific to the R/S-Enantiomer and Require the Gs Protein s
نویسندگان
چکیده
Cytochrome P450–derived epoxides of arachidonic acid [i.e., the epoxyeicosatrienoic acids (EETs)] are important lipid signaling molecules involved in the regulation of vascular tone and angiogenesis. Because many actions of 11,12-cis-epoxyeicosatrienoic acid (EET) are dependent on the activation of protein kinase A (PKA), the existence of a cell-surface Gs-coupled receptor has been postulated. To assess whether the responses of endothelial cells to 11,12-EET are enantiomer specific and linked to a potential G protein–coupled receptor, we assessed 11,12-EETinduced, PKA-dependent translocation of transient receptor potential (TRP) C6 channels, as well as angiogenesis. In primary cultures of human endothelial cells, (6)-11,12-EET led to the rapid (30 seconds) translocation a TRPC6-V5 fusion protein, an effect reproduced by 11(R),12(S)-EET, but not by 11(S),12(R)-EET or (6)-14,15-EET. Similarly, endothelial cell migration and tube formation were stimulated by (6)-11,12-EET and 11(R),12(S)EET, whereas 11(S),12(R)-EET and 11,12-dihydroxyeicosatrienoic acid were without effect. The effects of (6)-11,12-EET on TRP channel translocation and angiogenesis were sensitive to EET antagonists, and TRP channel trafficking was also prevented by a PKA inhibitor. The small interfering RNA-mediated downregulation of Gs in endothelial cells had no significant effect on responses stimulated by vascular endothelial growth or a PKA activator but abolished responses to (6)-11,12-EET. The downregulation of Gq/11 failed to prevent 11,12-EET–induced TRPC6 channel translocation or the formation of capillary-like structures. Taken together, our results suggest that a Gs-coupled receptor in the endothelial cell membrane responds to 11(R),12(S)-EET and mediates the PKA-dependent translocation and activation of TRPC6 channels, as well as angiogenesis.
منابع مشابه
The biological actions of 11,12-epoxyeicosatrienoic acid in endothelial cells are specific to the R/S-enantiomer and require the G(s) protein.
Cytochrome P450-derived epoxides of arachidonic acid [i.e., the epoxyeicosatrienoic acids (EETs)] are important lipid signaling molecules involved in the regulation of vascular tone and angiogenesis. Because many actions of 11,12-cis-epoxyeicosatrienoic acid (EET) are dependent on the activation of protein kinase A (PKA), the existence of a cell-surface G(s)-coupled receptor has been postulated...
متن کامل11,12-Epoxyeicosatrienoic acid stimulates endogenous mono-ADP-ribosylation in bovine coronary arterial smooth muscle.
The role of endogenous ADP-ribosylation in mediating the activation of the Ca(2+)-activated K(+) channels was determined in bovine coronary arteries. Endogenous ADP-ribosylation was examined by incubating coronary arterial homogenates or lysates of cultured coronary arterial smooth muscle cells with [adenylate-(32)P]NAD. Four (32)P-labeled proteins were observed at 51, 52, 80, and 124 kDa in th...
متن کامل11,12-Epoxyeicosatrienoic acid-induced inhibition of FOXO factors promotes endothelial proliferation by down-regulating p27Kip1.
Cytochrome P450-derived epoxyeicosatrienoic acids (EETs) stimulate endothelial cell proliferation and angiogenesis. In this study, we investigated the involvement of the forkhead box, class O (FOXO) family of transcription factors and their downstream target p27Kip1 in EET-induced endothelial cell proliferation. Incubation of human umbilical vein endothelial cells with 11,12-EET induced a time-...
متن کاملThe effects of ginsenoside Rb1 on fatty acid β-oxidation, mediated by AMPK, in the failing heart
Objective(s): This study intended to investigate the effects of Ginsenoside-Rbl (Gs-Rbl) on fatty acid β-oxidation (FAO) in rat failing heart and to identify potential mechanisms of Gs-Rbl improving heart failure (HF) by FAO pathway dependent on AMP-activated protein kinase (AMPK). Materials and Methods: Rats with chronic HF, induced by adriamycin (Adr), were randomly grouped into 7 groups. Gs-...
متن کاملActivation of Galpha s mediates induction of tissue-type plasminogen activator gene transcription by epoxyeicosatrienoic acids.
The epoxyeicosatrienoic acids (EETs) are products of cytochrome P450 (CYP) epoxygenases that have vasodilatory and anti-inflammatory properties. Here we report that EETs have additional fibrinolytic properties. In vascular endothelial cells, physiological concentrations of EETs, particularly 11,12-EET, or overexpression of the endothelial epoxygenase, CYP2J2, increased tissue plasminogen activa...
متن کامل